您的当前位置:主页 > 新闻资讯 > 行业动态

合作客户

方太
金伯利

联系我们

0371-86687083
地址:郑州市管城区紫金山路兴达国贸1802室
电话:0371-86687083

行业动态

人工智能的十大常用算法

2018-04-21 00:00:00    来源:    点击:4160    喜欢:0

通过本篇文章可以对机器人的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是简单介绍一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题。

 

今天的算法如下:

 

1. 决策树

 

2. 随机森林算法

 

3. 逻辑回归

 

4. SVM

 

5. 朴素贝叶斯

 

6. K最近邻算法

 

7. K均值算法

 

8. Adaboost 算法

 

9. 神经网络

 

10. 马尔可夫

 

1. 决策树(树的脉络就是特征属性)

 

根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。

 

2. 随机森林

 

在源数据中随机选取数据,组成几个子集

 

S 矩阵是源数据,有 1-N 条数据,A B C feature,最后一列C是类别

 

S 随机生成 M 个子矩阵(子矩阵和原矩阵比,列数没变行数变了)

 

M 个子集得到 M 个决策树

将新数据投入到这 M 个树中,得到 M 个分类结果,计数看预测成哪一类的数目最多,就将此类别作为最后的预测结果

 

3. 逻辑回归

 

当预测目标是概率这样的,值域需要满足大于等于0,小于等于1的,这个时候单纯的线性模型是做不到的,因为在定义域不在某个范围之内时,值域也超出了规定区间。

 

所以此时需要这样的形状的模型会比较好

 

那么怎么得到这样的模型呢?

 

这个模型需要满足两个条件 大于等于0,小于等于1

大于等于0 的模型可以选择 绝对值,平方值,这里用 指数函数,一定大于0

小于等于1 用除法,分子是自己,分母是自身加上1,那一定是小于1的了

 

再做一下变形,就得到了 logistic regression 模型

 

通过源数据计算可以得到相应的系数了

 

最后得到 logistic 的图形

 

4. SVM

 

support vector machine

 

要将两类分开,想要得到一个超平面,最优的超平面是到两个类的 margin 均达到最大,margin就是超平面与离它最近一点的距离(即实现两个点的距离都最大),如下图,Z2>Z1,所以绿色的超平面比较好

 

将这个超平面表示成一个线性方程,在线上方的一类,都大于等于1,另一类小于等于-1

 

点到面的距离根据图中的公式计算

 

所以得到 total margin 的表达式如下,目标是最大化这个 margin,就需要最小化分母,于是变成了一个优化问题

 

举个栗子,三个点,找到最优的超平面,定义了 weight vector=(23)-(11

 

得到 weight vector 为(a2a),将两个点代入方程,代入(23)另其值=1,代入(11)另其值=-1,求解出 a 和 截矩 w0 的值,进而得到超平面的表达式。

 

a 求出来后,代入(a2a)得到的就是 support vector

 

a w0 代入超平面的方程就是 support vector machine

 

5. 朴素贝叶斯(通过特征出现的后验事实概率来进行分类)

 

举个在 NLP 的应用

 

给一段文字,返回情感分类,这段文字的态度是positive,还是negative

 

为了解决这个问题,可以只看其中的一些单词

 

这段文字,将仅由一些单词和它们的计数代表

 

原始问题是:给你一句话,它属于哪一类

通过 bayes rules 变成一个比较简单容易求得的问题

 

问题变成,这一类中这句话出现的概率是多少,当然,别忘了公式里的另外两个概率

 

栗子:单词 love positive 的情况下出现的概率是 0.1,在 negative 的情况下出现的概率是 0.001

 

6. K最近邻

 

k nearest neighbours

 

给一个新的数据时,离它最近的 k 个点中,哪个类别多,这个数据就属于哪一类

 

栗子:要区分 狗,通过 claws sound 两个feature来判断的话,圆形和三角形是已知分类的了,那么这个 star 代表的是哪一类呢

 

k3时,这三条线链接的点就是最近的三个点,那么圆形多一些,所以这个star就是属于猫

 

7. K均值

 

视频

 

想要将一组数据,分为三类,粉色数值大,黄色数值小

最开心先初始化,这里面选了最简单的 321 作为各类的初始值

剩下的数据里,每个都与三个初始值计算距离,然后归类到离它最近的初始值所在类别

 

分好类后,计算每一类的平均值,作为新一轮的中心点

 

几轮之后,分组不再变化了,就可以停止了

 

8. Adaboost

 

视频

 

adaboost bosting 的方法之一

 

bosting就是把若干个分类效果并不好的分类器综合起来考虑,会得到一个效果比较好的分类器。

 

下图,左右两个决策树,单个看是效果不怎么好的,但是把同样的数据投入进去,把两个结果加起来考虑,就会增加可信度

 

adaboost 的栗子,手写识别中,在画板上可以抓取到很多 features,例如 始点的方向,始点和终点的距离等等

 

training 的时候,会得到每个 feature weight,例如 2 3 的开头部分很像,这个 feature 对分类起到的作用很小,它的权重也就会较小

 

而这个 alpha 角 就具有很强的识别性,这个 feature 的权重就会较大,最后的预测结果是综合考虑这些 feature 的结果

 

9. 神经网络

 

Neural Networks 适合一个input可能落入至少两个类别里

 

NN 由若干层神经元,和它们之间的联系组成

第一层是 input 层,最后一层是 output

 

hidden 层 和 output 层都有自己的 classifier

 

input 输入到网络中,被激活,计算的分数被传递到下一层,激活后面的神经层,最后output 层的节点上的分数代表属于各类的分数,下图例子得到分类结果为 class 1

 

同样的 input 被传输到不同的节点上,之所以会得到不同的结果是因为各自节点有不同的weights bias

 

这也就是 forward propagation

 

10. 马尔可夫

 

Markov Chains state transitions 组成

 

栗子,根据这一句话the quick brown fox jumps over the lazy dog’,要得到 markov chain

 

步骤,先给每一个单词设定成一个状态,然后计算状态间转换的概率

 

这是一句话计算出来的概率,当你用大量文本去做统计的时候,会得到更大的状态转移矩阵,例如 the 后面可以连接的单词,及相应的概率


生活中,键盘输入法的备选结果也是一样的原理,模型会更高级


嘉之元云通信为客户提短信验证码短信营销国际短信智能外呼机器人等服务!其在互联网行业深耕近10年,在验证码、营销短信、国际短信、智能语音机器人方面与业内资深企业强强联合,产品服务水平一直处于行业领先水平推荐阅读: 嘉之元小云AI智能外呼机器人功能概述

上一篇:智能外呼机器人:结合人工智能和区块链这两大趋势的好处
下一篇:嘉之元短信接口:人工智能在金融业的应用


  • 服务咨询 0371-86687083
  • 一对一贵宾级服务
  • 7X24小时技术保障
Copyright © 2013-2017. All Rights Reserved. 郑州嘉之元计算机科技有限公司 www.jzyyun.com 版权所有 | 增值电信业务经营许可证:B2-20194910| 备案号: 豫ICP备15030919-2号
营业执照
图片
[网站地图] [联系我们]
本公司主要从事:短信验证码,短信接口,短信平台,群发短信,短信群发 sitemap:sitemap.txt|

豫公网安备41010402002418号

点击这里给我发消息